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Abstract

Analytic expressions for the reflection, transmission, and mode conversion co-

efficients for electromagnetic and Langmuir waves in an unmagnetized plasma

with a parabolic density profile are found for both the "direct" problem (incident

electromagnetic wave) and the "inverse" problem (incident Langmuir wave). In

contrast to the linear profile problem, the absorption depends explicitly on the

value of the collision frequency (cold model) or temperature (warm plasma), but

a transformation of parameters relates the results for these two limits.

PACS Numbers: 52.40Db, 52.35Lv, 94.20Bb



The conversion of electromagnetic waves into electrostatic modes in an inho-

mogeneous, unmagnetized plasma is a topic of broad interest which has impor-

tant consequences for laboratory and space-plasma studies. Most of the analysis

of this problem has concentrated on the simpler case of a plasma with a linear

density profile'- 7 ; in fact, only recently6 has an analytic solution been obtained

for this case by a scale-separation technique. The present study uses this tech-

nique to solve the more technically demanding parabolic density profile problem,

a physically important situation of current interest to ionospheric heating at the

peak of the F-layers , Langmuir turbulence studies in basic laboratory devices9 ,

beat wave acceleration schemes, and some aspects of laser plasma interactions.

Previous analytical studies of this problem have considered the structure

of the electromagnetic wave, as done by Baflos'0 using Langer's method, and

by Lundborg and Thid 1 1 2 through an analytic uniform-approximation method.

However, these investigations have not yielded the structure of the electrostatic "ASP

fields excited at plasma resonance, and have not predicted the experimentally im-

portant mode conversion coefficients. The present study yields relatively simple

analytic expressions for these previously unknown quantities and simultaneously

solves the inverse mode conversion problem, a situation of diagnostic interest -
since it permits the sampling of microscopic plasma phenomena at remote loca-

tions.

In the direct problem, an electromagnetic wave of frequency w is obliquely
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incident on the plasma at an angle 0 relative to the density gradient, with w cho-

sen equal to the electron plasma frequency wp at the peak of the parabolic density

profile (Fig. 1). This wave encounters a cut-off at the layer wp(z) = wcosO, where

some of the wave is reflected, while the remainder tunnels to the plasma reso-

nance where w = w,(O). In this region, a portion of the incident wave energy is

transformed into plasma oscillations for the cold, collisional problem, and, for a

warm plasma, into Langmuir waves having cut-offs at WP(z) = w(l - f 2sin20)t/ 2,

where 32 - 3T,/m,c 2. The remaining energy tunnels out to the electromagnetic

cut-off, where it becomes the transmitted fraction of the electromagnetic wave.

Fig. I depicts this process for the warm, direct problem.

We also consider the warm, inverse problem, where an incident (leftgoing in

Fig. 1) electrostatic wave in the plasma gives rise to two outgoing electrostatic

waves [a rightgoing wave resulting from the reflection at the electrostatic cut-off

and a leftgoing wave transmitted through the evanescent layer around z = 0] and

two obliquely propagating, outgoing electromagnetic waves produced by mode

conversion in the region around z = 0.

In general, the electrons are treated as a warm, collisional fluid with an

unperturbed density no(Z) = W(O - z2 /L2 ) and collision frequency v. The ions

are static, and quasineutrality is assumed. The fluid equations are linearized by

setting n(Ft) = n+{nIl(z)exp[ik.z -wt]+c.c.}, etc. We assume that there are

no zero order fields or flows (EK, = J, = il, = 0). The fluid equations, together
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with Maxwell's equations then yield a set of equations 6'7 which couple E. and

By*

This set of equations can be expressed in terms of scaled coordinates and

wavenumbers appropriate for the parabolic profile problem: Z and N for the

electromagnetic mode, and and K for the electrostatic mode, where

-k /2z ( L)1/  / 2, (1)

and

K = '1 (kzL)/(koL)l/ 2 = 12N , (2)

with k. = w/c.

When the frequency matches the plasma frequency at the peak of the profile,

the scaled set of equations have the form

E+ (C2 + ivo/f - K2 )E. = bB(Z), (3)

pit + (( 2 + iL,.// 3 - K 2)p = -2(E./a, (4)

d2B/dZ2 - 2Z(Z 2 + .- q)-'dB/dZ + (Z 2 + iVo - q)B = S, ()

where k.p = V . E, B = iBm, b E iNa(l - 02)-31/2, a - 72)1 /2,

v. = k.Lv/w, S E S(Z)= -2iNZQ(Z 2+iv-q), with Q = (1-I 2)p-a-'E,,

q E N 2 = (k.L)2 /(koL), and the prime denotes differentiation with respect to (.

Eqs. (3) - (5) describe wave propagation and conversion in a plasma with

a parabolic profile. The electrostatic modes vary rapidly, i.e., on the short
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scale ((), whereas the electromagnetic modes vary much more slowly, i.e., on

the longer scale Z. The coupling of the two modes depends on the angle

of incidence through N. The larger the angle of incidence, the stronger the

coupling; however, as N increases, so does the tunnelling distance to the mode

conversion point, and the competition between these two phenomena causes a

peak in the mode conversion coefficient ior a finite angle of incidence.

Cold, Collisional Problem. For this case, we let 32 = 0 in the set of

equations (3) - (5), but keep v,, :' 0. In this limit, equations (3) and (4) yield

algebraic relations for p and E, in terms of B. When these expressions are

substituted into the righthand side of (5), we obtain a differential equation for

B whose homogeneous solutions are derivatives of parabolic cylinder functions.

This equation is solved7 using a Green's function technique, together with the

approximation that on the righthand side of (5), which can be shown to be

proportional to B(Z), we replace B(Z) by B(0). We then self-consistently

determine B(0) as well as B(Z) for Z > I and Z < -1, from which the

reflection and transmission coefficients can be found. We also compute the

mode conversion coefficient 17712 (the ratio of power collisionally dissipated in

plasma oscillations to the incident power in the electromagnetic wave) which

satisfies the energy conservation equation

Ii771 = I - IRI2 - TI2. (6)
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The final results can be most succinctly expressed in the form

ITi = (1 + e) -' v.lr 1' (7)I vl211I
2 +" X1 2 '

1172 = 2v' /2 I1I 2  Im[(i + eq./ 2)X] (8)

VIoZ FI2 + X 1 +eq

where X -2qlr 2 exp[qr/4+3ri/41/[i+exp(qlr/2)], iF I-[(l + iq)/4]I is the

gamma function 13 , and JRI2 is determined from (6). The converted energy from

just one side of the mode conversion layer is half of the amount given by (8).

Note that 1712 vanishes as vo, --- 0, in contrast to the linear profile problem where

11712 has a non-zero value in the cold, collisionless limit. In the limit q -. 0,

11712 = 0, and IR 2 = IT2 = 0.5, in agreement with the earlier work of Bafios.10

Fig. 2 depicts the dependence of the energy flux coefficients on the parameter

q - koL sin20 for vo = .01. For this case, the peak of 11712 occurs at q

qo 0.05, which is smaller than for the linear profile problem6'7 , where q-

(koL)2/3sin20 - 0.5. [It follows from (8) that for small q, 1712 is proportional

to q/q + av,'/212, where a is of order 10 and is independent of q, so fi 12 peaks

at a value of q i 10V.1/2.] For larger v'o, the peak of 17,12 moves to higher q, as

does the minimum of IR12, and the tail on the mode conversion coefficient falls

off more slowly. As q increases, the tunnelling distance for the electromagnetic

wave becomes large. This thick evanescent layer, which causes most of the

incident energy to be reflected, accounts for the fall-off of IT12 and 171 2 and the

large value of IRI2 (approaching 1) seen in Fig. 2 for q > .
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Warm, Direct Problem. In this case we set vo = 0 and keep 3 # 0. In

(3), the field E, is on the short electrostatic scale (C) whereas its source on the

righthand side, which is proportional to B(Z), is on the longer electromagnetic

scale. We utilize this disparity in scales to replace B(Z) by B(0) on the righthand

side of (3). Equation (3) is then just a parabolic cylinder equation driven by a

constant source. The solutions are determined by using the Green's function for

outgoing waves.

Given this solution to E. [in terms of B(0)] and the boundary conditions

for the direct problem, it immediately folows that p(() = -E'. The variables

E, and p thus have functional forms expressible in terms of parabolic cylinder

functions with argument C and their derivatives, with amplitudes proportional to

the quantity B(0).

In order to determine B(0), we substitute p(C) and E(C) into the source

term on the righthand side of (5). This equation has as homogeneous solutions

the derivatives of parabolic cylinder functions, and these are used to form the

Green's function for B(Z) satisfying the boundary conditions that B(Z) con-

sist of leftgoing (incident) and rightgoing (reflected) waves for Z > 1, and a

leftgoing (transmitted) wave for Z < -1. We then make the approximation

that the parabolic cylinder functions with argument Z, which are multiplied by

E,(C) and p(() in the Green's function expression for B, can be replaced by

their Z = 0 values during integration on the rapidly varying C scale.
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From the resulting expression for B(Z), we self- consistently determine B(O)

[by evaluating B(Z = 0)] and then calculate B(Z > 1) and B(Z < -1), which

give the reflection and transmission amplitudes, respectively. The results can

most easily be expressed as follows. Each of the quantities ITI2, 1RI2 , and

I772 for the warm, direct problem is equal to the corresponding quantity for the

cold, collisional problem with the substitutions vo -- /) and X - iirM 2, where

M 2 =-iq.f. exp[(l + )qir/ 4 ][fj__t I(()d(]/{[i + exp(qir/2)][i + exp(3qir/2)]J},

and Q -- F[(I + iqo)/ 4 ]/I"[(l - iqI3)/ 41. The function I((), which represents

the solution to the driven parabolic cylinder equation with a constant source, is

analogous to the function7 Gi + iAi, which is an outgoing solution to the driven

Airy equation, encountered in the linear density profile problem.

Fig. 3 exhibits the warm energy flux coefficients as a function of q for

electron temperature 02 = 10-4. Since M 2 and X have essentially the same q

dependence as long as 3q < 1, it is not surprising that these curves are similar

to those of Fig. 2 for the cold, collisional case. In both the cold and warm

cases, the small q form of 1712 is abq/Ia+ibq12, where a and b are independent

of q, so the maximum value of 1712 is 0.5.

Warm, Inverse Problem. Solution of the inverse problem proceeds in a

manner analogous to that of the direct problem, with one technical complication

which is a consequence of the difference in boundary conditions for the direct and

inverse problems. In the solution to the p equation, (4), the boundary conditions
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for the inverse problem permit a homogeneous solution as well as the particular

solution. The coefficient po of this homogeneous solution constitutes a second

unknown constant, in addition to B(O). We determine these by evaluating the

Green's function expression for B(Z) at Z = O,as in the direct problem, and

also using the z component of Ampere's Law evaluated at Z = 0. We find that

the effect of p0 is simply a correction of order L1/ 2 to the constant B(0), so we

can neglect the p, term.

The energy flux coefficients for the inverse problem, shown in Fig. 3 as

a function of q for 032 = 10- 4 , are determined in a manner identical to that

for the direct problem. Only a single mode conversion coefficient is plotted,

since we have shown by explicit calculation that lr, 1 = IrI72 (where the I and

D subscripts refer to the inverse and direct cases, respectively), a result which

follows from time reversal symmetry. Fig. 3 also reveals an additional near

symmetry: RI2 ;Z IT1 and IT!12 ; JR. We have analytically demonstrated

that these equalities are valid to within terms of order /3/2, but have not been

able to show exact equality.

From the present results it is clear that the degeneracy between cold and

warm plasma behavior found in the linear profile problem is not present for the

parabolic profile. In the latter case, all mode conversion coefficients depend

explicitly on ,, and L. However, it is possible to relate the warm absorption

coefficients to the collisional results through a transformation of parameters. For
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non-linear studies, of relevance to ionospheric and laboratory experiments, it is

worth emphasizing that for the same input power, the experimentally measurable

ratio of peak electric fields is

JE. [pAR 18.6 LpAR 9
IE.ILIN - ()1/2(13 . 1i+ .05)1/ 2 LLI ' (9)

where LuN is the scale length of the linear density profile and LpA is the

curvature of the parabolic density profile.

The present study clearly illustrates the usefulness of the scale-separation

technique. It allows an analytic solution of the direct and inverse conversion

problems for both linear and parabolic density profiles from a unified point of

view. We believe that the method may be of value in similar situations involving

magnetized plasmas.

This work was supported by the Office of Naval Research, U.S.DOE, and

the UCLA Dissertation Year Fellowship.
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Figure Captions

Figure 1. Schematic of the direct problem. An incident electromagnetic wave

(EM!) gives rise to a reflected wave (EMp), a transmitted wave (EMT), and

outgoing Langmuir waves (ESouT). The inner and outer dashed lines represent

the electrostatic and electromagnetic cut-offs, respectively.

Figure 2. Cold, collisional energy flux coefficients as a function of q = koLsin29

for vo = .01.

Figure 3. Warm, energy flux coefficients as a function of q = koLsin 2 0 for 02

10-4.
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